A General High-order Multi-domain Hybrid Dg/weno-fd Method for Hyperbolic Conservation Laws
نویسندگان
چکیده
In this paper, a general high-order multi-domain hybrid DG/WENO-FDmethod, which couples a p-order (p ≥ 3) DG method and a q-order (q ≥ 3) WENO-FD scheme, is developed. There are two possible coupling approaches at the domain interface, one is non-conservative, the other is conservative. The non-conservative coupling approach can preserve optimal order of accuracy and the local conservative error is proved to be upmost third order. As for the conservative coupling approach, accuracy analysis shows the forced conservation strategy at the coupling interface deteriorates the accuracy locally to firstorder accuracy at the ‘coupling cell’. A numerical experiments of numerical stability is also presented for the non-conservative and conservative coupling approaches. Several numerical results are presented to verify the theoretical analysis results and demonstrate the performance of the hybrid DG/WENO-FD solver. Mathematics subject classification: 65M60, 65M99, 35L65
منابع مشابه
Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws
In this article we introduce the multi-domain hybrid Spectral-WENO method aimed at the discontinuous solutions of hyperbolic conservation laws. The main idea is to conjugate the non-oscillatory properties of the high order weighted essentially non-oscillatory (WENO) finite difference schemes with the high computational efficiency and accuracy of spectral methods. Built in a multi-domain framewo...
متن کاملMulti-dimensional hybrid Fourier continuation-WENO solvers for conservation laws
We introduce a multi-dimensional point-wise multi-domain hybrid Fourier-Continuation/WENO technique (FC-WENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and essentially dispersionless, spectral, solution away from discontinuities, as well as mild CFL constraints for explicit time stepping schemes. The hybrid scheme conjugates the expensive, s...
متن کاملMulti-domain Fourier-continuation/WENO hybrid solver for conservation laws
We introduce a multi-domain Fourier-Continuation/WENO hybrid method (FCWENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and which enjoys essentially dispersionless, spectral character away from discontinuities, as well as mild CFL constraints (comparable to those of finite difference methods). The hybrid scheme employs the expensive, shock-ca...
متن کاملThe multi-dimensional limiters for discontinuous Galerkin methods on unstructured grids
High order limiters remain one of the main challenges for discontinuous Galerkin (DG) methods in solving hyperbolic conservation laws. This paper proposes an efficient limiting procedure for the DG method. The key feature is to construct additional polynomials from the solutions on neighboring cells by means of secondary reconstruction. Then the limited solution on current cell can be obtained ...
متن کاملOn maximum-principle-satisfying high order schemes for scalar conservation laws
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization...
متن کامل